(1)adv/dtkv分离dv/dtkv变量并积分:dv/dtkv>∫dv/v∫kdt,积分限(v 0 > v)v)dv/v 2∫(0,4,dv/dtkv 2tdv/v .其实微积分可以回答我...积分相当于求体积。已知截面积为1/V 2的微小体积dv/V 2和截面积为KT、高度为dt的微小体积ktdt相等,且条件T: 0 ~ TV: V 0 ~ V同时变化且始终相等,这意味着它们求和后的总面积相等,即积分相等。
1、是大学物理,貌似又是数学问题,怎么化简的?我不能发图,只能告诉你adv/dt1.0v,意思是:dva*dt1.0v*dt,所以因子dv/v1.0dt带入你的盒子,v0 time对应时间的起点,vt对应t time,所以这个结果,但前提是v是连续可微函数,而且这个条件在题目开头就已经包含了!微积分在物理中的应用,如果是偏微分的话会很麻烦,所以我无法用我上面的方法在里面迭代。希望对你有帮助。
2、数学积分的一个问题!谢谢!两边都是t的导数,实际上V是t的函数,也就是说t时刻的瞬时速度v(t)在物理上只是简单处理。如果代入v(t),就是一个简单的常微分方程。一般来说,我们把vv1 at看成速度的变量,也就是说在一定加速度下,速度发生变化,所以在很短的时间内,用dt积分方程两边,就可以得到相应的所需数。一般来说,dt在很短的时间内是有意义的,是一个变量,但在最初的学习过程中,不要过分追求具体的意义。毕竟放着更有意义。
3、这个大学定积分怎么算啊(1)dv/dtkv2分离变量:(dv)/v2kdt积分:1/vkt C1代入初始条件t0vv0得到:C11/v0,所以:1/v1/v0 kt通过将问题含义:t10,vv0/2代入上式:k1/10v0得到,则:。
4、大学物理,就是那个求积分那里就不懂了,其实会微积分的进来就可以解答我...integration相当于求体积。已知截面积为1/V 2的微小体积dv/V 2和截面积为KT、高度为dt的微小体积ktdt相等。T: 0 ~ TV: V 0 ~ V两者同时变化且同时相等的条件,表示它们求和后的总面积相等,即积分相等。4、dv/dtkv^2tdv/v^2ktdt∫(v0,v)dv/v^2∫(0,t)ktdt1/v|(v0,
5、大学物理积分是怎么一回事?你需要先解决问题,然后公式化,然后用电脑计算,再去问老师。(1)adv/dtkv将dv/dtkv变量分离出来并进行积分:dv/dtkv>∫dv/v∫kdt,积分限(v0 > v),(0 > t) ln (v/v0) kt > vv0。(2) vv0。
6、高分!!!加急!!!求高手解答!!!分部积分中已知dv怎么求v?请问这是题给的dvdx吗?对于这个问题,直接积分vx就够了,加上的常数在分量导数后为0,不影响结果。你好!因为常数的导数是0,所以我们这里用任意常数Cvx C,希望对你有帮助,也希望能被采纳。Dv已经知道了,想求V,但是不是有无数种可能吗?答:可以,因为dv的不定积分有无数个V C,其中C是常数,比如dvdx,那么V的值可能是X,X ^ 1,X ^ 2或者X ^ 3。